Little Blue Run Impoundment Community Well Water Sampling

May 18, 2011

Drew Michanowicz

Center for Healthy Environments and Communities
University of Pittsburgh Graduate School of Public Health,
Department of Environmental and Occupational Health

www.chec.pitt.edu www.fractracker.org

A very special THANK YOU to all the participants who volunteered to have their well water tested for this project!!!!

THANK YOU also for your patience in what sometimes is a slow process

We want to stress the importance of having private drinking water tested regularly, especially in proximity to Little Blue Run

General Information

- 85 total samples from 81 different community resident's wells.
- Samples taken on November 1, 2, 3, and 22 of 2010
- Samples analysis by the RJ Lee Group, Inc., Monroeville, PA
- Methods for sample analysis:
 - EPA method 200.7-PA for drinking water
 - 26 Inorganics, Salts and General Parameters
- A Multiparameter probe was used on each site
- Information related to depth, elevation, and physical location were recorded for each site.

CHEC Sampling Locations
 World Basemap

What is Know and Unknown

- Drinking water is NEVER truly pure
- The amounts of materials in water can fluctuate seasonally and vary according to depth and location
- It is often difficult to know what is in waste systems such as Little Blue
- These types of waste impoundments are highly variable
 - Concentrations of metals, and these leach into the ground and water are poorly understood (Hansen, 2006)
- Often strategies to control waste in these sites are not put into place prior to design (Reardon, 1995)
- Sampling for metals, etc. is not perfect, there are analytical and human errors involved

CHEC Sample #: 11-01-###

RJL Sample #: PA041120100018-###

Sample Date: 11/01/2010

Sample Date.	1 1/0 1/2010					
Chemical	EPA Primary Drinking Water Standard [µg/L (PPB)]	Sample Results [µg/L (PPB)]				
Antimony	6	0.489				
Arsenic	10	0.333				
Barium	200	265				
Beryllium	4	0.0205				
Cadmium	5	< 0.0200				
Copper	1000	1.51				
Fluoride	2000	343				
Lead	5	0.037				
Mercury	2	< 0.200				
Selenium	50	< 2.00				
Thallium	2	< 0.0200				
Uranium	30	< 2.00				
Chemical	EPA Secondary Drinking Water Standard [µg/L	Sample Results [µg/L (PPB)]				
	(PPB)]	1.5 \ /2				
Aluminum		< 20.0				
Aluminum Iron	(PPB)]					
	(PPB)] 200	< 20.0				
Iron	(PPB)] 200 300	< 20.0 832				
Iron Manganese	(PPB)] 200 300 50	< 20.0 832 742				
Iron Manganese pH	(PPB)] 200 300 50 6.5-8.5	< 20.0 832 742 7.96 pH Units				
Iron Manganese pH Silver	(PPB)] 200 300 50 6.5-8.5	< 20.0 832 742 7.96 pH Units < 2.00				
Iron Manganese pH Silver Total Dissolved Solids	(PPB)] 200 300 50 6.5-8.5 100 500000	< 20.0 832 742 7.96 pH Units < 2.00 276000				
Iron Manganese pH Silver Total Dissolved Solids Zinc	(PPB)] 200 300 50 6.5-8.5 100 50000	< 20.0 832 742 7.96 pH Units < 2.00 276000 < 5.00 Sample Results				
Iron Manganese pH Silver Total Dissolved Solids Zinc Chemical	(PPB)] 200 300 50 6.5-8.5 100 50000 Unregulated	< 20.0 832 742 7.96 pH Units < 2.00 276000 < 5.00 Sample Results [µg/L (PPB)]				
Iron Manganese pH Silver Total Dissolved Solids Zinc Chemical Boron	(PPB)] 200 300 50 6.5-8.5 100 500000 Unregulated N/A	< 20.0 832 742 7.96 pH Units < 2.00 276000 < 5.00 Sample Results [μg/L (PPB)]				
Iron Manganese pH Silver Total Dissolved Solids Zinc Chemical Boron Calcium	(PPB)] 200 300 50 6.5-8.5 100 500000 Unregulated N/A N/A	< 20.0 832 742 7.96 pH Units < 2.00 276000 < 5.00 Sample Results [µg/L (PPB)] 61 28700				
Iron Manganese pH Silver Total Dissolved Solids Zinc Chemical Boron Calcium Molybdenum	(PPB)] 200 300 50 6.5-8.5 100 500000 Unregulated N/A N/A N/A	< 20.0 832 742 7.96 pH Units < 2.00 276000 < 5.00 Sample Results [µg/L (PPB)] 61 28700 0.678				
Iron Manganese pH Silver Total Dissolved Solids Zinc Chemical Boron Calcium Molybdenum Potassium	(PPB)] 200 300 50 6.5-8.5 100 500000 Unregulated N/A N/A N/A	< 20.0 832 742 7.96 pH Units < 2.00 276000 < 5.00 Sample Results [μg/L (PPB)] 61 28700 0.678 2320				

All study participants received certified laboratory results from RJ Lee Group, Inc., as well as a table comparing these results to USEPA drinking water standards in μg/L, pronounced "micrograms per liter." (also called ppb or "parts per billion")

The primary standards are based on specific human health concerns, whereas secondary standards are based on aesthetic factors.

History of Little Blue/Data

- Feb 10, 1973
 - Proposed methodology for sludge disposal at Little Blue Run
- Oct 11, 1974
 - A permit is granted for the "Little Blue Run Development Area," as a "stack gas scrubber waste disposal site" under the PA Solid Waste Management Act which allowed for the discharge of industrial waste to surface waters.
 - No liner or leachate collection system is included in this permit
- Aug 1976 Foundation Treatment for Little Blue
 - 420ft. Sloping dam construction study
 - Included Topography, geology, hydrology, subsurface investigation, seepage
- Numerous Notices of Violations concerned citizens and researchers.
 - For example July 31, 1989 discharge TSS 194mg/l, pH 10.5 in violation of NPDES

History of Little Blue (cont.)

- May 12, 1989
 - Groundwater Assessment
 - Statistical correlation analysis (Cl, Ca, Na) Supernate vs. Monitoring wells.
- May 29, 1990
 - Bearing Capacity (Gai Consultants) Identifying and Characterizing "current sludge mixture."
- Sept 25, 1992
 - Waste Analysis and Classification
 - Sludge analyzed metals, VOCs, nutrients, pH, etc.
- July 12, 1993
 - Effect of Brine on Clays
 - Physico-chemical reactions

History of Little Blue (cont.)

- Multiple LBR Embankment Monitoring reports
 - Dam Weir outflow, rainfall, GPM 3 springs, 2 Abutments, piezometer readings
- 1995
 - FGD Sludge Fresh Water Effects Study (Strength v. Permeability)
- 1997
 - Hydrogeologic Characterization
 - Conductivities, storage co, transmissivity, hydraulic gradients, ground water velocities, depths, 3D groundwater flow (slug tests)
- 2007
 - Time Trend Graphs 1990-2007 (Dec)
 - Flow, pH, Conductance, Temp
- 1895-2009 Quarterly/Annual ground and surface water sampling analysis

Summarized Results of CHEC Sampling Drinking Water Standards

- Only one sample exceeded the USEPA primary drinking water standard for arsenic (sample: 11.5 $\mu g/L$, standard: 10.0 $\mu g/L$)
- 14 samples exceeded the secondary drinking water standard for iron (Fe)
- 29 samples exceeded the secondary drinking water standard for manganese (Mn)
- 4 samples exceeded the secondary drinking water standard for total dissolved solids (TDS)
- 2 samples exceeded the secondary drinking water standard for aluminum (Al)
- 1 sample exceeded the secondary drinking water standard for fluoride (F)

CHEC Sampling Locations 2010 PADEP 3rd Quarter Sampling Locations 2008

Comparisons to PADEP 3rd Quarter Sampling 2008 Total Dissolved Solids (Mg/L)

Comparisons to PADEP 3rd Quarter Sampling 2008 Calcium(Mg/L)

Comparisons to PADEP 3rd Quarter Sampling 2008 Manganese(Mg/L)

Comparisons to PADEP 3rd Quarter Sampling 2008 Sodium(Mg/L)

Up-gradient vs. Down-gradient DEP Data

Constituent	Units	Groundwater									
		Up-gradient	#	Down- gradient	#	Interstitial Water*					
Alkalinity	mg/L as CaCO3	320	(79)	234	(99)	54					
рН	standard units	8	(73)	7.39	(99)	8.82					
Specific Conductance	μS/cm	811	(74)	2960	(99)	6350					
Temperature	degrees Celsius	15		15		15					
Laboratory Analyses (All values	are for the dissolved frac	tion)									
Dissolved Solids (TDS)	mg/L	560	(71)	2200	(99)	5070					
Arsenic	μg/L	< 10	(71)	< 10	(99)	NA					
Boron	μg/L	251	(54)	247	(98)	NA					
Calcium	mg/L	11.1	(74)	173	(99)	565					
Carbon (Total Organic)	mg/L	1	(71)	1	(71)	NA					
Chloride	mg/L	31.5	(75)	278	(99)	509					
Chromium	μg/L	< 2	(24)	< 2	(24)	NA					
Fluoride	mg/L	1.3	(71)	0.46	(99)	4.6					
Iron	μg/L	40	(67)	40	(99)	40					
Magnesium	μg/L	5,150	(68)	640	(99)	121000					
Manganese	μg/L	530	(36)	230	(83)	30					
Nitrogen, as NH4	mg/L	0.32	(57)	0.49	(99)	0.1					
Nitrogen, as NO2 + NO3	mg/L	0.05	(59)	0.05	(99)	0.22					
Potassium	mg/L	2.09	(62)	17.29	(99)	87.1					
Selenium	μg/L	< 3	(24)	< 3	(24)	NA					
Sodium	mg/L	207.5	(62)	304.6	(99)	778					
Sulfate	mg/L	6.25	(62)	241	(99)	2930					

Best Judgment of LBR Impact on Ground Water (PADEP and CHEC)

- Increase in TDS
- Increase in Calcium (Ca)
- Increase in Sulfate (SO₄)
- Increase in Chloride (Cl)
- Increase in Potassium (K)
- Increase in Sodium (Na)
- Decrease in Magnesium (Mg)

Manganese in Sample Results

• Number of samples: 83

• Minimum: $0.9 \mu g/L$

• Maximum: 2060 µg/L

• Mean: 166.69 μg/L

EPA secondary drinking water standard:

0.05mg/l or 50 μ g/L

Health Advisories											
	10-kg	Child									
Manganese	One-day (ug/l)	Ten-day (ug/I)	RfD (mg/kg/day)	DWEL (ug/L)	Life-time (ug/L)						
	1000	1000	0.14	1600	300						

Manganese – Health Risks

- The body regulates uptake of Mn
- Below 300 μg/L, no adverse health effects are expected
- 5.2% of USGS sampled domestic wells contain >300 µg/L (n=2,159)
- 18 sampled wells near LBR contained >300 μg/L
- Evidence shows possible neurological health problems related to exposure above this level may occur, particularly in infants, young children, people with low iron levels, and people with chronic liver disease
- Water with high Mn levels should not be used to make infant formula

Before & After Purification Systems from Same Well Sampled Twice

	Control vs. Purification	Boron (mg/L)	Iron (mg/L)	Manganese (mg/L)	Strontium (mg/L)	Antimony (mg/L)	Molybdenum (mg/L)	Fluoride (mg/L)	Barium (mg/L)	Calcium (mg/L)	Potassium (mg/L)	Sodium (mg/L)	Zinc (mg/L)	Arsenic (mg/L)	Copper (mg/L)	Lead (mg/L)	Nickel (mg/L)	Selenium (mg/L)	TDS (mg/L)
	Before	38.1	92.6	12	881	0.085	0.862	228	212	44200	1530	11300	5.3	0.53	2.84	0.015	0.2	1	268000
R	After Water Softener & Leverse Osmosis	38.2	41.2	0.45	15	0.066	0.748	218	1	76.4	190	53400	5.8	0.653	11.5	0.015	4.36	1	214000
	Before	136	253	366	3310	0.535	0.316	346	3490	83200	7180	232000	480	1.96	48.7	1.73	2.54	7.96	1240000
	After Water Softener	139	2	0.45	443	0.154	0.131	353	444	11800	12400	331000	42.5	1.52	77.1	1.32	3.74	6.27	1270000

Water softener & reverse osmosis decreased: iron, manganese, antimony, calcium, potassium, TDS, while sodium increased

Water softener alone decreased: iron, manganese, strontium, barium, calcium, zinc, arsenic, while potassium and sodium increased

Carbon Filter & Water Softener Samples Vs. Samples Average

Sample Type	Aluminum (mg/L)	Boron (mg/L)	Iron (mg/L)	Manganese (mg/L)	Strontium (mg/L)	Fluoride (mg/L)	Barium	Calcium (mg/L)	Potassium (mg/L)	Sodium (mg/L)	Zinc (mg/L)	Arsenic (mg/L)	Copper (mg/L)	Nickel (mg/L)	Selenium (mg/L)	Total Dissolved Solids (mg/L)
Carbon Filter, No Softener	10.0	42.8	12.0	0.5	123.0	130.0	92.3	67500.0	1190.0	9220.0	35.7	0.1	7.4	0.4	1.0	280000.0
Water Softener	10.0	93.6	18.3	0.5	15.0	236.0	1.0	34.4	78800.0	113000.0	2.5	0.6	2.8	0.2	1.0	464000.0
All Samples Avg.	26.0	224.1	1617.7	166.6	671.5	389.4	241.4	63718.2	4696.0	81626.6	23.2	0.9	11.8	2.0	2.6	601000.0

Compared to sample means of all samples, a carbon filter displayed lower levels for all constituents sampled

The water softener also displayed lower levels for all samples compared to the mean concentrations

Conclusions of CHEC Sampling

- 29 sampled wells had Manganese (Mn) concentrations above the secondary USEPA drinking water standard
- There are some health concerns for manganese
- 14 samples had Iron (Fe) concentrations above the USEPA secondary drinking water standard
- Only 1 sample of elevated arsenic (11.5 ppb)
- The large majority of sampled water does not seem to be impacted, yet this is a snapshot sample
- The use of water softeners, carbon filters, and reverse osmosis systems displayed decreased levels of many metals and salts including Fe and Mn
- Spatial variations seem somewhat similar to DEP sampling in 2008
- DEP monitoring values were higher in 2008 on average for most metals and salts sampled. Calcium statistically significantly higher not including impacted wells (p<0.01)

Recommendations

- Pitcher-type or faucet carbon filter units can remove some forms of iron and manganese
- Boiling water is not recommended to remove iron and manganese
- It is important to have well water tested at least annually due to proximity to LBR
- We did not test for coliform bacteria, testing should also occur annually or when there is a change in taste, color or odor

Special Thanks

- To all the volunteers and community members
- RJ Lee Group, Inc.
- The Heinz Endowments
- Shannon Kearney
- Chuck Christen
- Amanda Barry

Thank You for Your Attention

Questions?

The Center for Healthy Environments and Communities University of Pittsburgh, Graduate School of Public Health 412-648-8541

Email: Arm73@pitt.edu